地理视野高中地理冻土知识点总结,青藏

白癜风如何确诊治疗好 https://m-mip.39.net/nk/mipso_4599368.html
一直专业做地理冻土是指零摄氏度以下,并含有冰的各种岩石和土壤。一般可分为短时冻土(数小时/数日以至半月)/季节冻土(半月至数月)以及多年冻土(又称永久冻土,指的是持续二年或二年以上的冻结不融的土层)。冻土具有流变性,其长期强度远低于瞬时强度特征。正由于这些特征,在冻土区修筑工程构筑物就必须面临两大危险:冻胀和融沉。随着气候变暖,冻土在不断退化。形成条件

气候

冻土分布区的环境条件存在差异。冰沼土分布区属苔原气候,大部分地面被雪原和冰川所覆盖,年平均温在0℃以下,一般都在-10℃至-17℃,冬季气温可低至-40℃,甚至-55℃,夏季温度也很低,7月份平均温度不超过10℃,全年结冰日长达天以上。高山冻漠土年均温也很低,一般为-4℃至-12℃。冻土区降水很少,欧洲部分为—毫米,亚洲和北美洲北部在毫米以下,西藏冻漠土区因地势高、远离海洋,降水更稀少,一般为60~80毫米,其北部更少,为20~50毫米,其中90%集中于5—9月。降水虽然少,但气温低,蒸发量小,长期冰冻,土壤湿度很大,经常处于水分饱和状态,夏季土壤—母质融化,砂土可达1~1.5米,壤土70~厘米,泥炭土35~40厘米,以下即为永冻层,高山冻漠土在宽谷、湖盆永冻层深度80厘米,山坡上可达厘米。

植被

由于冻土区气候严寒,植被是以苔藓、地衣为主组成的苔原植被,草本植物和灌木很少,常见的植物有:石楠属、北极兰浆果、金凤花等开花植物,南缘有云杉、落叶松、桦、白杨、柳、山梣等,生长缓慢,矮小且畸形,各种植物的年生长量均不大,苔原地带每年有机质的增长量为公斤/公顷,是世界各自然地带中最少的。高山冻漠土区植被为多年生和中旱生的草本植物、垫状植物和地衣,常见的有凤毛菊属、葶苈属、桂竹香属、虎耳草属、点地梅属、银莲花属、金莲花属、红景天属等,一簇簇地生长在石隙之间,或在冰雪融水灌润的地方局部呈小片分布。五颜六色的粗糙碟衣、地图黄绿衣、岩表黄绿衣等则着生于石块上面。

地形、母质

冻土发育的地区,因刚脱离冰川覆盖不久,冰川地形保持得相当完整。冻漠土分布区的地形主要是陡峭的山坡,角锋、刃脊、第四纪和近代冰川所形成的冰斗和冰碛垅堤,宽谷,湖盆的湖积平原等。成土母质的差异较大,加拿大、西伯利亚地盾区是前寒武系基岩。其他地区有古生代各种灰岩、石英砂岩、板岩、中生代的灰岩、红色钙质砂泥岩及近代泥砾和冲积物,残积物,冰碛物,冰水沉积物等。

什么是多年冻土?

所谓多年冻土(permafrost),是指持续多年冻结的土石层。一个典型的多年冻土见图1:地表有一些覆盖物(土壤或一些植被),这一层一般会季节性的消融和冰冻,温度变化较为剧烈,所以叫活动层(图1,2)。在其之下是多年冰封的岩石或土壤(图1白灰色部分),即多年冻土,他们的温度较为稳定,维持在0摄氏度以下。所以一般人站在地上是看不到多年冻土层的。有多年冻土的区域大概占北半球陆地的24%,其不止是在极地区域,也分布在高山等海拔较高的区域(比如我国青藏高原地区)。图1.(左侧)一个典型的极地区域的多年冻土层(自挪威),图自JeffVanuga/Getty。(右侧)冬季和夏季时冻土层和活动层的垂向温度。冻土是指在0℃以下并含有冰的各种岩土和土壤。温度在0℃以下不含冰的岩土和土壤称作寒土或冷土。按土的冻结状态保持时刻的长短,冻上一般可分为短时冻土、季节冻土及多年冻土三种类型。我国的自然地理环境决定多年冻土形成与存在。多年冻土分为高纬度多年冻上和高海拔多年冻土两种。多年冻土的形成是由纬度和海拔高度所决定的。冻土层的厚度从高纬到低纬逐渐减薄,以至完全消失。例如,北极的多年冻土厚达百米到千米(图2)。永冻层的顶面接近地面。逐渐向南,多年冻土厚度减到m以下,永冻层的顶面埋藏变深。大致北纬48°附近是多年冻土的南界,冻土厚度仅1~2m。超过这一界限,就从连续冻土带过渡到不连续冻土带(图2)。后者由许多分散的冻土块体组成,这种分散的冻土块体称为岛状冻土块(图2)。图2.多年冻土层从高纬度(左)向低纬度(右)的变化示意图。全球变化下的多年冻土多年冻土近年来受到非常多的   )A.活动层厚度变小,补给河流的水源增加B.活动层厚度变大,春耕播种的时间推迟C.永冻层上界上升,利于喜温植物的生长D.永冻层上界下降,建筑基础稳定性变差冻土可分为季节冻土和多年冻土。冬天含冰冻结、夏天全部融化的岩土被称为季节冻土,包括季节冻结层和季节融化层。读图(北半球)回答2、3题。2.根据图中信息所示,季节冻土的分布特点是A.季节冻结层水平分布的范围小B.随着纬度的升高,季节融化层厚度增加C.季节冻结层多分布在极地附近D.随着海拔的升高,季节融化层厚度降低3.我国东北地区季节冻土冻结和融化的规律是A.季节冻结层每年6月开始产生B.季节融化层每年6月开始产生C.季节冻结层每年9月达最大厚度D.季节融化层每年9月达最大厚度冻土是指零摄氏度以下,含有冰的各种岩石和土壤。一般可分为短时冻土(数小时/数日以至半月);季节冻土(半月至数月)以及多年冻土(数年至数万年以上)。根据下图回答4题。4.下列有关冻土的说法,不正确的是()A.冻土分布具有明显的纬度地带性规律,自北而南,分布的面积和厚度减少B.具有明显的纬度地带性规律,自高纬度向中纬度,多年冻土下界逐渐埋深C.自高纬度向中纬度,分布着多年冻土、季节性冻土和短时性冻土D.冻土分布还具有垂直地带性规律。越往海拔高的地方冻土面积越大,厚度越厚冻土是温度在0℃或0℃以下,并含有冰的各种岩(土)。冬季含冰冻结、夏季全部融化的岩土被称为季节冻土。下图为北半球冻土分布剖面图,读图回答5、6题。5.下列关于冻土叙述的不正确的是(   )A.冻土可分为季节冻土和多年冻土B.中纬度的多年冻土随纬度增高而增厚C.纬度较低的青藏高原也有冻土层D.季节冻土水平分布的范围小6.铁路通过季节冻土层地段,下列措施最经济有效的()A.设计冷冻系统,全年处于冻结状态B.打穿冻土层,将承重分散到基岩C.设计遮盖系统,使路基避免阳光照射D.利用冻土层,固结铁路桩基右图为加拿大东北部某地出现的房屋倾斜下沉照片,请回答7、8题。7.图中的森林是A.亚寒带针叶林B.亚热带常绿阔叶林C.亚热带常绿硬叶林D.温带落叶阔叶林8.造成房屋倾斜下沉的原因最有可能是A.过量抽取地下水造成地层下陷B.位于环太平洋地震带地震频繁导致C.冻土融化造成地基不稳D.位居飓风侵袭路径左图是世界上最北端的城市朗伊尔城位置示意图,它位于挪威斯瓦尔巴群岛。右图是年暑假苏南某中学师生赴该岛科学考察时拍摄到的照片。读图回答9、10题。9.朗伊尔城所在的岛屿南、北端的纬度相差近4°,太阳直射点移动的速度约为0.25°/天,下列极昼天数与朗伊尔城最接近的是A.天左右B.天左右C.50天左右D.20天左右10.考察队员发现岛上的房屋都建在木桩上,原因是A.减少占用耕地B.保护野生动物C.通风防潮D.减轻冻土融化危害11.阅读图文材料,完成下列要求。材料:中俄石油运输管道——漠(河)大(庆)线,全长千米,其中北部的千米穿越了多年冻土区。多年冻土分为活动层和多年冻层上下两层。地理学者研究发现多年冻土区的融沉、冻胀丘、冰锥等对管道的安全性构成了潜在的威胁。冻胀丘是由于地下水受冻结地面和下部多年冻土层的遏阻,在薄弱地带冻结膨胀,使地表变形隆起,称冻胀丘,按其存在时间可划分为季节性冻胀丘和多年生冻胀丘。季节性冻胀丘每年冬季发生,夏季消失。(1)指出加格达奇多年冻土活动层和多年冻层的分界深度,并分别说明其季节特征。(6分)(2)简述b图季节性冻胀丘的形成原因。(6分)(3)说明季节性冻胀丘对管道的危害。(6分)(4)以“治水”为核心,提出防治季节性冻胀丘危害管道的措施。(4分)12.阅读图文材料,完成下列要求。材料:多年冻土分为上下两层,上层为夏季融化,冬季冻结的活动层,下层为多年冻结层。我国的多年冻土分布主要分布于东北高纬度地区和青藏高原海拔地区。东北高纬地区多年冻土南界的年平均气温在-1°-1°,青藏高原多年冻土下界的年平均气温约为-3.5°-2°C。由我国自行设计、建设的青藏铁路成功穿越了约千米的连续多年冻土区,是全球目前穿越高原、高寒及多年冻土地区的最长铁路。多年冻土的活动层反复冻融及冬季不完全冻结,会危机铁路路基。青藏铁路建设者创造性地提出了“主动降温、冷却路基、保护冻土”的新思路,采用了热棒新技术等措施。图8a示意青藏铁路格拉段及沿线年平均气温的分布,其中西的滩至安多为连续多年冻土分布区。图8b为青藏铁路路基两侧的热棒照片及其散热工作原理示意图。热棒地热部分为冷凝段,地下部分为蒸发段,当冷凝段温度低于蒸发段温度时,蒸发段液态物质汽化上升,在冷凝段冷却成液态,回到蒸发段,循环反复。(1)分析青藏高原形成多年冻土的年平均气温比东北高纬度地区低的原因。(8分)(2)图8a所示甲地比五道梁路基更不稳定,请说明原因。(8分)(3)根据热棒的工作原理,判断热棒散热的工作季节(冬季或夏季)简述判断依据,分析热棒倾斜设置(图8b)的原因。(8分)13.根据以下材料,回答问题。材料:青藏高原气候高寒,气温一般低于地温,是我国主要的冻土分布区,冻土层可分为活动层和多年冻土层两部分。其中,活动层靠近地表,随着外界气温变化或冻或融;多年冻土则常年处于冰冻状态。青藏铁路格(尔木)拉(萨)段成功穿越了约km的连续多年冻土区,是全球目前穿越高原、高寒及多年冻土地区的最长铁路。活动层反复冻融及冬季不完全冻结,使冻土的体积发生膨胀和收缩,会危及铁路路基,为此青藏铁路的建设者们创造性地提出了低架旱桥、热棒技术、抛石路基等措施。其中抛石路基即用碎块石填筑路基,利用其通风透气性,隔阻热空气下移,同时吸入冷量,起到保护冻土的作用。下图是青藏铁路分布图,右上图是抛石路基结构示意图,右下图为片石护坡景观图。(1)运用大气受热过程,分析青藏高原地区气温低于地温的原因。(2)冻土活动层冬夏季的反复冻融,会对列车运行的安全产生怎样的不利影响,请简述其过程。(3)根据抛石路基的设计原理,判断其散热效果最显著的季节,并分析其原因。(4)专家建议,部分东西走向的路段的路基两侧增加片石护坡,且南侧厚度要大于北侧,试分析其可能原因。参考答案:DDDBDBACBD11.(1)6米。(2分)多年冻土活动层冻土夏季融化,冬季冻结,(1分)6米以下的多年冻土层全年地温小于0℃,全年处于冻结状态。(1分)(2)该地地势低洼,(1分)夏季有沼泽分布,(1分)有稳定的地下水补给,(1分)土壤含水量大;(1分)冬季过湿土壤冻结,(1分)体积膨胀上升形成冻胀丘。(1分)(3)夏季冻土融化,管道沉降,(1分)冬季土壤冻结的挤压力抬升管道,(1分)反复冻融使管道位移发生弯曲变形。(2分)(4)地表开挖沟渠,排走地表水和地下水;在管道两侧的地下建设截水墙等阻水工程,阻止地下水流向管道;在冻胀丘上钻孔,排干丘内水分。(一点2分,任答两点给4分,其他答案合理可酌情给分)12.(1)青藏高原纬度低,海拔高,太阳辐射强;(3分)(东北高纬地区年平均气温低于—1℃~1℃,可以形成多年冻土。)青藏高原气温年较差小,当年平均气温同为—1℃~1℃时,冬季气温高,冻结厚度薄,夏季全部融化,不能形成多年冻土。(5分)(2)甲地年平均气温更接近0℃,受气温变化的影响,活动层更频繁地冻融,(冻结时体积膨胀,融化时体积收缩,)危害路基;(4分)甲地年平均气温高于五道梁,夏季活动层厚度较大,冬季有时不能完全冻结,影响路基稳定性。(4分)(3)冬季。(2分)依据:冬季气温低于地温,热棒蒸发段吸收冻土热量,(将液态物质汽化上升,与较冷的地上部分管壁接触,凝结,释放出潜热,)将冻土层中的热量传送至地上(大气)。(3分)热棒倾斜设置的原因:使热棒能深入铁轨正下方,保护铁轨下的路基(多年冻土)。(3分)13.(1)青藏高原海拔高,空气稀薄,晴天较多;白天被削弱的太阳辐射较少,到达地面的较多,地面吸收后增温;但空气稀薄云量较少,对地面的长波辐射吸收较少,加之高原地区多大风天气,大部分热量散失掉,气温较低。(2)冬季的时候,冻土在冻结状态下,体积会发生膨胀,建在上面的路基和钢轨就会被顶起;到了夏季,冻土消融,体积收缩,路基和钢轨随之降下去;反复出现就会造成路基严重变形,铁轨出现严重弯曲、高低不平,影响列车行车安全。(3)冬季。冬季气温较低,冻土易冻结,抛石路基利用其通风透气性,起到类似于通风管储冷的作用,加快路基的散热,减小因路基升温对冻土冻结产生的影响。(4)南侧为阳坡,增温较北侧快,增加片石护坡厚度可减缓外部温度的变化对冻土的影响,从而达到与北侧相近的温度,保持路基两侧降温的一致性。(·安徽省池州市二模)阅读材料,完成下列要求。材料多年冻土作为青藏高原特殊的下垫面,它的存在与变化对气候变化有明显的反馈、调节和指示作用。位于多年冻土之上的活动层是多年冻土与大气的接触面,多年冻土对气候系统的影响首先通过活动层与大气间的能水交换来实现。冻土的形成与地表面的辐射热量交换有关,辐射热量平衡的结构对冻土的形成和动态变化有决定作用。下图为青藏高原某山区地表辐射收支年内变化和活动层土壤温度变化图。(1)描述该山地地表能量收支的年内变化特征。(2)判断在季节发生转换时土壤热通量与其它各因子数值变化差异,并说明判断依据。(3)说明该山地活动层土壤的冻融过程并简述其成因。(4)推测活动层融化厚度的年内变化特点,并分析原因。答案:(1)季节变化明显;各收支项年内变化特点相似;总辐射、净辐射、土壤热通量及地面热源强度在6月~7月最大,在11月~12月最小(土壤热通量的年内变化较小)。(2)差异:土壤热通量数值变化幅度远小于其它各因子,且收、支转换明显。依据:随着地表能量的季节转换,土壤热通量有明显的正负交替。(3)冻融过程:大致4月~10月为融化期,11月~次年3月为冻结期。原因:11月~次年3月活动层土壤温度在0℃以下,活动层土壤处于冻结期;土壤温度由4月中下旬开始升至0℃以上,土壤开始融化。(4)特点:4月中下旬开始融化,到9月底10月初达到最大融化深度,10月开始减少乃至消失。原因:在融化期间,从4月中下旬开始随地表接收太阳辐射的增多,融化厚度逐渐增大,至9月底10月初融化厚度达到最大值;10月初开始随地表接收太阳辐射的减少,融化厚度逐渐减小,当地表能量积累为0时活动层的融化厚度最小。解析:从本题的文字材料中提取相应的有效信息可得:1.多年冻土作为下垫面,其存在和变化对气候变化有明显的反馈、调节和指示作用。2.活动层是多年冻土和大气的接触面。3.多年冻土对气候系统的影响从活动层与大气之间的能水交换开始。4.辐射热量结构对冻土的形成和动态变化起决定作用。(1)本题属于识图题,要求考生描述该山地地表能量收支的年内变化特征。描述类问题,特别是描述特征类的试题,通常可以归结为共性与个性的问题,由于题目要求描述该山地地表能量收支的年内变化特征,“该山地”在此处作为一个整体,因此考生只需分析表格中五条曲线的共性即可。观察曲线变化情况可知,五条曲线的季节变化明显,且年内变化趋势和特点是相似的,由此可以推出答案的第一点和第二点;五条曲线中,总辐射、净辐射、土壤热通量和地面热源强度均在6月7月达到最大值,在11月12月达到最小值,由此考生可以得到答案的第三点。(2)本题属于识图题和依据题的结合,考查考生是否能从感性认识上升到理性认识。首先进行初步判断,季节转换的时间为春季和秋季,此时对比土壤热通量对应的曲线和其他四条曲线,较容易地得到,谭老师地理工作室综合整理在春季土壤热通量对应的曲线和其他四条曲线均呈上升趋势,但上升幅度远远小于后者;在秋季土壤热通量对应的曲线和其他四条曲线均呈下降趋势,但下降幅度远远小于后者。此处可以较容易地得出土壤热通量数值变化幅度远小于其它各因子的结论。“收、支转换明显”是考生较难得出的一点,也是本题的拉分点,需要考生有较强的数据处理和分析能力。观察坐标轴和数值可以得到,土壤热通量的数值变化幅度不仅较小,还在0附近波动,这说明一年中土壤热通量存在吸收热量和放出热量两种状态,即收、支转换明显。至于依据,就是要说明得出差异的理由。观察左图,1-3月和10-12月土壤热通量为负值,4-9月土壤热通量为正值。由右图的活动层土壤的温度垂直变化可以得到,土壤热通量的正负变化与活动层土壤的冻融过程基本一致。由文字材料中的原理可以得到,辐射热量结构对冻土的形成和动态变化起决定作用,说明地表能量的收支过程对进入土壤的热流有重要的影响,因此,可以得到判断的依据是地表能量的季节转换(季节变化)使得土壤热通量有明显的正负交替。(3)本题同样是识图题和原因题的结合,要求考生说明该山地活动层土壤的冻融过程及其形成原因。由于“冻”与“不冻”的分界点就是0℃,因此找到右图中的0℃的端点位置即可。观察右图可得,0℃线的端点位置大致为4月和10月。其中在4月到10月这一时间段内,0℃线逐渐下移,说明此时的活动层开始融化,因此4月到10月是活动层土壤的融化期,相应地11月到次年3月为活动层土壤的冻结期。至于原因,只要抓住“0℃”这个分界点作答即可。(4)本题尽管指令词是“推测”,但其本质仍然是一道地理原理与识图结合的题。此处要抓住题目中的“辐射热量结构对冻土的形成和动态变化起决定作用”这一原理。由此原理大致可以得出,随着地表接收的太阳能逐渐增大,进入土壤的热流增加,活动层的土壤温度随着进入土壤的能量逐步增多而升高,导致活动层冻土逐渐融化。因为活动层融化期是4月到10月,我们只对这一时段进行分析即可,至于融化厚度,即0℃线所对应的深度。对比左右图可知,由于从3月份开始,地表能量收支不断增加,土壤温度从4月中下旬开始呈正温,0℃线逐步向下推移,到9月份中下旬0℃线达到最大深度。由于9月份到10月份地表能量收支锐减,10月份活动层土壤开始冻结,到11月份冻结过程结束,一直到次年3月,土壤的活动层一直呈冻结状态,此时的融化厚度为零。此处由于考生知识有限,不必答出“地表能量收支”,提到“太阳辐射”即可。该题的命题思路和方式是最接近年全国I卷的第37题的,同时命题素材又选择了年全国I卷的冻土问题,可以较好地帮助考生备考。曲线题的综合难度不大,基本上都是考查考生应用原理解决问题的能力。由于其蕴含的信息较多且较抽象,阅读难度较大,考生在解决曲线类的大题时尤其要花足够的时间去阅读,去提取题目中的有效信息和相关原理。另外,冻土问题仍然是全国卷命题的热点素材,考生在备考时需引起重视。活动层活动层指覆盖于多年冻土之上夏季融化冬季冻结的土层。它具有夏季单向融化、冬季双向冻结的特征。下伏非衔接多年冻土或非多年冻土区(如多年冻土区融区地带及非多年冻土区),冬季冻结、夏季融化的土层是季节冻结层。活动层是多年冻土区的主要特征之一,但它不是多年冻土的一部分。

为什么说冻土是铁路路基的杀手(附高铁桥上飞的原因)

冻土是什么?分布在哪里?怎么考?(附考题预测)

高考热门考点——冻土

一键搜你感兴趣的热门文章声明:文章素材来源网络,由谭老师地理工作室综合整理,转载请注明出处,如涉及侵权请联系删除!(由于



转载请注明地址:http://www.adaiere.com/lcls/21260.html
  • 上一篇文章:
  • 下一篇文章: 没有了
  • 热点文章

    • 没有热点文章

    推荐文章

    • 没有推荐文章